Understanding neural coding through the model-based analysis of decision making.
نویسندگان
چکیده
The study of decision making poses new methodological challenges for systems neuroscience. Whereas our traditional approach linked neural activity to external variables that the experimenter directly observed and manipulated, many of the key elements that contribute to decisions are internal to the decider. Variables such as subjective value or subjective probability may be influenced by experimental conditions and manipulations but can neither be directly measured nor precisely controlled. Pioneering work on the neural basis of decision circumvented this difficulty by studying behavior in static conditions, in which knowledge of the average state of these quantities was sufficient. More recently, a new wave of studies has confronted the conundrum of internal decision variables more directly by leveraging quantitative behavioral models. When these behavioral models are successful in predicting a subject's choice, the model's internal variables may serve as proxies for the unobservable decision variables that actually drive behavior. This new methodology has allowed researchers to localize neural subsystems that encode hidden decision variables related to free choice and to study these variables under dynamic conditions.
منابع مشابه
Investment Decision-Making about Portfolio of Technology Development Projects; Based on the Analysis of Success Criteria using Fuzzy Neural Network and MADM
Technology development project is a type of investment project and it is important to identify the performance indicators and planning for the correct investment. The purpose of this research is the development of indicators of portfolio success, accurate analysis of the effects of indicators on each other and the achievement of a proper investment model. In this research, the success criteria ...
متن کاملA DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملA Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis
In this paper we present a recurrent neural network model to recognize efficient Decision Making Units(DMUs) in Data Envelopment Analysis(DEA). The proposed neural network model is derived from an unconstrained minimization problem. In theoretical aspect, it is shown that the proposed neural network is stable in the sense of lyapunov and globally convergent. The proposed model has a single-laye...
متن کاملPreventing the frequency of infectious diseases in vulnerable groups - by anticipating the role of actors in implementing the decision-making model in conditions of uncertainty Pandemic experience Covid-19
Background: The purpose of this study is to prevent the prevalence of infectious diseases in vulnerable groups by anticipating the role of actors in implementing decision-making models in conditions of uncertainty in medical universities. Methods: This research is an applied research by combining qualitative and quantitative methods based on the foundation data theory (Grand Theory). To determ...
متن کاملEntrepreneurship policy and innovative indicators of industrial companies: Evaluation by MCDM and ANN Methods
The present paper presented a methodology for prioritizing the innovative and entrepreneurial indicators using Multi Criteria Decision Making (MCDM) and Artificial Neural Networks (ANNs), taking into account three individual, organizational and cultural dimensions simultaneously in decision making procedure. This methodology has two main advantages: first, the speed of operation in the accounti...
متن کاملEnsemble strategies to build neural network to facilitate decision making
There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 31 شماره
صفحات -
تاریخ انتشار 2007